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Abstract. The three-dimensional axisymmetric problem of the indentation of a thin compressible linear elastic
layer bonded to a rigid foundation is considered. Approximate analytical solutions of the problem that incorporate
a large portion of the singular deformation gradients near the edge of the indenter are presented. An accurate
closed-form expression for the deformation as well as the deformation gradient throughout the layer is provided
and its effectiveness in solving the problem numerically is demonstrated. By incorporating the approximate
solution into the numerical scheme the accuracy and convergence rate increase dramatically.
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1. Introduction

Indentation testing is a well-established method for measuring the mechanical properties of
materials. The analysis of this testing procedure has a long history [1–10], yet the problem
remains of interest. Examples of current applications include nanoindentation testing for thin
films [11] hardness studies [12] and biomechanical testing [13].

The indentation problem considered here originally comes from the study of mechanore-
ceptors in tissue, including Pacinian corpuscles, SA II receptors, and chondrocytes. These
receptors, which are generally distributed through the depth of the tissue, are responsible for
transducing a component of the deformation field at the receptor location into a neural or
chemical signal. In the case of tactile sensors, it is still an open question as to what component
of the field is transduced. One hypothesis is that, when using indentation tests to study receptor
response, the vertical strain plays a central role in the transduction process [14]. To address
this question it is essential to know the deformation throughout the depth and this brings us
to the objectives of this paper. In particular, we intend to demonstrate the effectiveness of an
analytical approximation of the deformation, both as a relatively simple expression in studying
the deformation at the receptor location as well as its effectiveness in producing an accurate
numerical method to solve the problem. It is worth mentioning that indentation, using either
a flat or spherical end indenter, is used extensively in biological tissue testing. We consider
flat-ended indenters since they have the advantage of providing an optimal choice in terms of
sensitivity in the indentation test [13].

In this paper we study the three-dimensional axisymmetric static indentation problem. We
consider the case of a linear elastic layer bonded to a rigid foundation, with a cylindrical
flat-ended rigid indenter. The layer is assumed to be thin, i.e. the ratio ε of the depth of the
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Figure 1. Schematic representation of the problem under investigation.

layer h to the radius a of the indenter is taken to be small. The indenter is given a prescribed
vertical displacement and is assumed to be frictionless. The resulting mathematical problem
is easily expressed as a mixed-boundary-value problem within the linear theory of elasticity
([15], pp. 12–15). Because of the classical nature of the problem numerous approaches have
been used to solve it, although most of them are not applicable to our situation. Examples
are the classical solutions of Hertz and Boussinesq ([7], pp. 93–98, pp. 204–209), ([16],
pp. 76–84) which are valid under the assumption of the layer being thick compared to the
radius of the indenter, i.e. the limit h/a >> 1. The traditional approach to solving the finite-
depth problem involves using integral transform techniques ([7, pp. 246–255], [8, 17, 15, 18].
This method requires extensive mathematical analysis to invert the transforms and also has the
difficulty that the kernels of the integrals become singular in the limit ε → 0, ([7, pp. 255–
271], [8, 17]. More importantly, these techniques generally provide the deformation field only
on the surface of the layer and involve complicated inverse transforms when determining the
deformation through the depth.

One might argue, given the complexity of the transform methods, that it would be best to
simply solve the problem directly using a numerical method such as finite elements. The com-
plication with this approach, when using a flat-ended indenter, is that the solution is singular
at the edge of the indenter and this singularity dominates the response of the layer. What this
means is that a direct numerical approach requires extensive refinement in this region and even
then it is not clear that an accurate solution is obtained. A much better idea is to incorporate
an accurate approximation of the solution, which accounts for this singular behavior, into the
numerical algorithm and thereby compute an accurate solution using a much coarser mesh.
This will be done in this paper.

In this work we combine approximate analytical solutions that were obtained for the pla-
nar problem [19–21], to produce one for the three-dimensional axisymmetric case. We first
perform an asymptotic analysis of the problem in terms of the small parameter ε to produce
an approximate analytical solution. It is shown that the analytical solution obtained in [20,
21] is accurate up to O(ε) for the three-dimensional axisymmetric problem. This solution is
compared to the numerical solution found using a finite-difference scheme as well as to an
asymptotic approximation derived earlier in [1]. The resulting analytical approximation of
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the deformation gradient is also compared to the ones calculated numerically and from the
asymptotic solution near the edge of the intender. After this we incorporate the analytical
solution into the numerical scheme and we exhibit the fact that the convergence rate and
accuracy of the modified scheme is greatly increased.

Our approach to solving the problem has certain advantages. First, it enables us to calculate
the deformation field as well as the deformation gradient throughout the layer and not only
on the surface. Second, because it is a direct method, the approach has the potential of being
extended to nonlinear problems (i.e. the case were we assume a nonlinear constitutive relation
for the elastic layer) for which the integral-transform techniques do not apply. Moreover, it
works efficiently for values of the Poisson ratio that are of practical interest in the study of the
mechanical properties of tissue, namely in the range [0·0,0·1], [22].

It should be emphasized that, apart from providing a solution for the axisymmetric in-
dentation problem, the purpose of this paper is to advocate the approach that a combina-
tion of analytical and numerical techniques can prove useful for solving efficiently systems
of partial differential equations that arise in applications. As such, we believe, the results
of the paper are useful not only to researchers in indentation problems but to the general
engineering-mathematics community. In fact, one might argue that more sophisticated nu-
merical methods, such as adaptive finite-element or finite-difference schemes could solve
this indentation problem at least as effectively as our hybrid numerical/analytical method.
However, the methodology that we propose could still be useful within the framework of
adaptive numerical methods.

2. Equations of the model

The equilibrium equations of linear elasticity for a homogeneous isotropic body in the absence
of body forces are ([23], p. 28):

(1 − 2ν)
u′ + ∇(∇ · u′) = 0, (2.1)

where u′ is the displacement vector field and ν is the Poisson ratio. In the axisymmetric case,
Equation (2.1) becomes:

∂2u′
r

∂z′2 + B
∂2u′

z

∂z′∂r ′ + A
∂

∂r ′ (
1

r ′
∂

∂r ′ (r
′u′

r )) = 0, (2.2a)

A
∂2u′

z

∂z′2 + B

r ′
∂2

∂z∂r ′ (r
′u′r )+ 1

r ′
∂

∂r ′ (r
′ ∂u

′
z

∂r ′ ) = 0, (2.2b)

where A and B are constants that depend on the Poisson ratio:

A = 2(1 − ν)

1 − 2ν
, B = 1

1 − 2ν
. (2.3)

The elastic layer is assumed to be in frictionless contact with the indenter and in bonded
contact with a rigid foundation, thus the displacements are taken to be equal to zero at z = h.
We take the shear stress to be zero over the entire surface. Moreover, the vertical displacement
field is assumed to have a prescribed constant initial value, uz = δ, on the surface underneath
the indenter. Consequently, the boundary conditions are:

σrz = 0 for z′ = 0, r ′ ∈ [0,∞), (2.4a)
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σzz = 0 for z′ = 0, r ′ ∈ (a,∞), (2.4b)

u′
z = δ for z′ = 0, r ′ ∈ [0, a], (2.4c)

u′
z = u′

r = 0 for z′ = h, r ′ ∈ [0,∞), (2.4d)

where σ is the stress tensor. We want to invoke only the components of the displacement field,
hence we rewrite the boundary conditions as:

∂u′
r

∂z′ + ∂u′
z

∂r ′ = 0 for z′ = 0, r ′ ∈ [0,∞), (2.5a)

(1 − ν)
∂u′

z

∂z′ + ν(
∂u′

r

∂r ′ + u′
r

r ′ ) = 0 for z′ = 0, r ′ ∈ (a,∞), (2.5b)

u′
z = δ for z′ = 0, r ′ ∈ [0, a], (2.5c)

u′
z = u′

r = 0 for z′ = h, r ′ ∈ [0,∞), (2.5d)

We want to study the case when the elastic layer is thin, i.e. the case when the depth of the in-
denter h is small when compared to the radius of the indenter a. Introducing the dimensionless
parameter ε,

ε ≡ h

a
(2.6)

we can express the assumption that the layer is thin in the form :

ε � 1. (2.7)

As a first step towards the asymptotic treatment of (2.5) we write it in nondimensional
form. To this end, we perform the following change of variables:

r = r ′

a
, z = z′

h
, u = u′

δ
. (2.8)

Inserting (2.8) into (2.2) and (2.5) we obtain:

∂2ur

∂z2
+ εB

∂2uz

∂z∂r
+ ε2A

∂

∂r
(
1

r

∂

∂r
(rur)) = 0, (2.9a)

A
∂2uz

∂z2
+ ε

B

r

∂2

∂z∂r
(rur)+ ε2 1

r

∂

∂r
(r
∂uz

∂r
) = 0, (2.9b)

∂ur

∂z
+ ε

∂uz

∂r
= 0 for z = 0, r ∈ [0,∞), (2.9c)

(1 − ν)
∂uz

∂z
+ εν(

∂ur

∂r
+ ur

r
) = 0 for z = 0, r ∈ (1,∞), (2.9d)

uz = 1 for z = 0, r ∈ [0, 1], (2.9e)

uz = ur = 0 for z = 1, r ∈ [0,∞). (2.9f)
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3. Asymptotic analysis - Approximate solutions

We use the fact that the parameter ε is small in order to develop asymptotic approximations
for the components of the deformation field. Substituting first-order expansions of the form

ur = u(0)r +O(ε), (3.10)

uz = u(0)z +O(ε) (3.11)

in (2.9) we obtain the outer solution [21]:

u(0)r = 0, (3.12)

u(0)z =
{

1 − z for : 0 ≤ r < 1
0 for : 1 < r < ∞ .

In order to solve the interior-layer problem we first introduce the transition-layer coordinates:

R ≡ r − 1

ε
, z ≡ z U(R, z) ≡ u(r, z). (3.13)

The boundary-value problem (2.9), expressed in the transition layer coordinates, becomes:

∂2UR

∂z2
+ B

∂2Uz

∂z∂R
+ A

∂

∂R
(

1

1 + εR

∂

∂R
((1 + εR)UR)) = 0, (3.14a)

A
∂2Uz

∂z2
+ B

1 + εR

∂

∂R
((1 + εR)

∂UR

∂z
)+ 1

1 + εR

∂

∂R
((1 + εR)

∂Uz

∂R
) = 0, (3.14b)

∂UR

∂z
+ ∂Uz

∂R
= 0 for z = 0, R ∈ [−1

ε
, 0], (3.14c)

(1 − ν)
∂Uz

∂z
+ εν

∂UR

∂R
+ ν

1 + εR
UR = 0 for z = 0, R ∈ (0,∞), (3.14d)

Uz = 1 for z = 0, R ∈ [−1

ε
, 0], (3.14e)

Uz = UR = 0 for z = 1, R ∈ [−1

ε
,∞). (3.14f)

Inserting asymptotic expansions for the deformation field of the form

U = U0 +O(ε) (3.15)

in (3.14) and letting ε → 0 we obtain the following BVP for the deformation field in the
transition layer:

∂2U 0
R

∂z2
+ B

∂2U 0
z

∂z∂R
+ A

∂2U 0
z

∂R2
= 0, (3.16a)

A
∂2U 0

z

∂z2
+ B

∂2U 0
R

∂R∂z
+ ∂2U 0

z

∂R2
= 0, (3.16b)
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∂U 0
R

∂z
+ ∂U 0

z

∂R
= 0 for z = 0, R ∈ (−∞,∞), (3.16c)

(1 − ν)
∂U 0

z

∂z
+ ν

∂U 0
R

∂R
= 0 for z = 0, R ∈ (0,∞), (3.16d)

U 0
z = 1 for z = 0, R ∈ (−∞, 0), (3.16e)

U 0
z = 0 for z = 1, R ∈ (−∞,∞), (3.16f)

U 0
R = 0 for z = 1, R ∈ (−∞,∞). (3.16g)

The O(1) inner axisymmetric problem is the same as the planar inner problem. Thus, we
can use the approximate analytical solutions obtained in [21] to derive a first-order approx-
imation for the inner axisymmetric problem. The BVP (3.16) was solved approximately in
[21] using the Papkovich-Neuber representation that involves two harmonic potential func-
tions ψ(R, z), φ(R, z). A BVP for Laplace’s equation was then solved for the two potential
functions using conformal mapping and calculating the appropriate Green’s function. The
deformation field resulting from the two potential functions satisfies the equilibrium equa-
tions and all but two of the boundary conditions, namely (3.16c), (3.16g). It was argued that,
since the objective was to obtain analytical expressions that incorporate a large portion of
the singularity in the solution, only the ‘essential’ boundary conditions that are responsible
for the formation of the singularity are important. We shall see, by comparing the analytical
expressions with the numerical solution as well as with a well known asymptotic solution, that
the formula obtained for the vertical deformation field is in close agreement with the actual
solution. The approximate expressions for the first-order displacement fields are [20, 21]:

UR(R, z) = c1z√
2

√
f1(R, z)+ f2(R, z)

f1(R, z)
−
∫ z

1
H(R, s, z) ds

+1 − (3 − 4ν)c1

π
log

(√
eπR + 1 − 1√
eπR + 1 + 1

)
+ c1R√

eπR + 1
,

(3.17a)

Uz(R, z) = 1

π
atan

(√
2
√
f1(R, z)+ f2(R, z)

f1(R, z)− 1

)

−c1R√
2

eπR sinπz

f1(R, z)
√
f1(R, z)− f2(R, z)

,

(3.17b)

where :

c1 = 2

3 − 4ν
, (3.18a)

H(R, s, z) = 1 − (2 − 4ν)c1√
2

√
f1(R, s)+ f2(R, s)

f1(R, s)

− πc1

2
√

2

R(f1(R, s)g2(R, s)+ g1(R, s))√
f1(R, s)+ f2(R, s)f1(R, s)

3

− πc1

2
√

2

z(f1(R, s)g2(R, s)− g1(R, s)√
f1(R, s)− f2(R, s)f1(R, s)3

,

(3.18b)
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f1(R, s) =
√

e2πR + 1 − 2eπR cosπs, (3.18c)

f2(R, s) = eπR cos πs − 1, (3.18d)

g1(R, s) = e3πR cos πs + eπR cosπs − 2e2πR, (3.18e)

g2(R, s) = e2πR − eπR cosπs. (3.18f)

The function atan is defined in terms of the principal branch Atan as :

atan(ω) =
{

Atan(ω) ω ≥ 0
Atan(ω)+ π ω < 0

.

From the assumptions under which these formulas were obtained it is to be expected that
only the expression for the vertical component of the deformation field will be in close agree-
ment with the actual solution. Indeed, the expression for ur does not match with the outer
solution. This is not an issue in what follows as the vertical deformation is of primary interest.
It is possible to adapt the analysis to derive a similar approximation for ur but this will be left
for future study.

The analytical expression for the vertical component of the deformation field enables us
to obtain an approximation for the normal stress field as well as the applied normal pressure.
Indeed, from the formula

σzz = 2µ

1 − 2ν

[
(1 − ν)

∂uz

∂z
+ εν

(
∂ur

∂r
+ 1

r
ur

)]
, (3.19)

where µ is the apparent shear modulus, we see that to O(1), σzz depends only on uz. The
dimensionless applied load can be obtained upon integration of the surface normal stress :

P =
(

4µaδ

1 − ν

)−1

2π
∫ a

0
σzz|z=0 r dr. (3.20)

With the derivation of the approximate solution completed, we will turn to questions re-
lated to its accuracy and usefulness to provide information about the deformation in the layer.
Unfortunately, however, there are no exact solutions to compare with. For this reason the next
step will be the development and analysis of a numerical solution which can serve as a basis
for comparison.

4. Results

4.1. NUMERICAL SOLUTION

We solve the BVP (2.9) numerically using finite differences. We discretize the domain using
a uniform mesh with 2M + 1 and N nodes in the r and z direction, respectively. Because of
the singularity, the mesh has a node placed at the edge of the indenter, r = 1, z = 0.

We use second-order accurate finite differences throughout the computational domain and
the boundaries. We use one-sided first-order-accurate finite differences only when approxi-
mating ∂ur/∂z, ∂uz/∂z at z = 0. Moreover, we use one-sided differences to approximate
∂ur/∂r in the boundary condition (2.9c) at r = 1, z = 0, since only the left-side derivative
exists there. Another possibility would be to use second-order finite differences to approximate
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the partial derivatives on the boundary. However, since the gradient of the displacement field
becomes singular at the edge of the intender, a higher-order finite-difference approximation of
the displacement gradient would be a poor choice in that region. Moreover, as will be seen in
the solutions shown later, the displacement gradients on the surface vanish rapidly away from
the singularity, so using a higher-order approximation would not significantly improve the
accuracy of the numerical scheme in that region. Moreover, as one can see from Figure 10 the
convergence rate of the numerical scheme is quadratic, so the approximation of the gradients
with first-order differences does not reduce the convergence rate of the numerical solution.

We calculate the numerical solution in the domain% ≡ (r ∈ [0, 2], z ∈ [0, 1]). This choice
was justified after a series of numerical tests in different domains that exhibited the fact that
the solution is effectively zero outside the computational domain % ≡ (r ∈ [0, rf ], z ∈ [0, 1])
for rf > 1·5 and ε < 0·3. We specify boundary conditions at r = 0, r = 2 using the outer
solution.

The discretization procedure results in an asymmetric sparse linear system of equations.
We solve it using the bi-conjugate gradient method with incomplete LU factorization for
preconditioning. The iteration procedure was terminated when a relative accuracy criterion
with tolerance 10−7 was satisfied. We used the F11BAF-F11BBF-F11BCF NAG routines.

In Figures 2 and 3 we present the components of the deformation field at various depths
for ε = 0·1 and ν = 0·1, ε = 0·1 and ν = 0·0, respectively. We use 3201 and 800 points
on the radial and vertical directions, respectively. We see that the singularity in the gradients
disappears as we move towards the interior. In fact, in accordance with the theory of elliptic
equations, the solution is infinitely smooth throughout the interior of the layer ([24, pp. 308–
326]. We also observe the localized nature of the singularity at r = 1, z = 0, as well as the
interior layer structure of the solution near r = 1. This fact also justifies our choice of solving
the problem in the computational domain % defined in the previous paragraph, since both
the vertical and the horizontal displacement fields vanish outside this region. By comparing
between the horizontal components of the deformation field for ν = 0·1 and ν = 0·0 we see
that the strength of the singularity at r = 1, z = 0 increases as the Poisson ratio decreases.
Moreover, although it is not shown in these figures, the strength of the singularity increases as
ε decreases.

In Figures 4 and 5 we present the deformation field throughout the layer. This complements
the curves in Figure 3. We use the same mesh as before. We observe that there is a region with
a slight outward deformation. This is also apparent in Figures 2 and 3 deformation decreases
as ν decreases.

4.2. MODIFIED NUMERICAL SCHEME

From the numerical results that we have presented so far it is clear that the reason we have to
use a fine mesh in order to solve the boundary value problem numerically is the presence of
the singularity in the gradients on the surface at the edge of the indenter. On the other hand,
the approximate analytical solutions, at least for the vertical deformation field, incorporate a
large portion of the singularity. Thus, we can use the analytical solutions in order to obtain
a BVP that is ‘less singular’ and thus have a problem that can be solved accurately using a
coarser mesh. In other words, we want to subtract the analytical solutions from the original
BVP and solve the resulting problem for the residual deformation fields. To this end, we write
the components of the displacement field as

uz = uaz + urz, (4.21a)



Solution to a three dimensional axisymmetric indentation problem 9

Figure 2. Numerically calculated displacement field for ε = 0·1 , ν = 0·1. Mesh points: M = 3201 in the radial
direction, N = 800 in the vertical direction.

Figure 3. Numerically calculated displacement field for ε = 0·1 , ν = 0·0. Mesh points: M = 3201 in the radial
direction, N = 800 in the vertical direction.

uz = uar + urr , (4.21b)

where uaz , uar are the analytical solutions (3.17a), (3.17b). The components of the residual
deformation field urz, u

r
r satisfy the following inhomogeneous BVP:

∂2urr

∂z2
+ εB

∂2urz

∂z∂r
+ ε2A

∂

∂r
(
1

r

∂

∂r
(rurr)) = h1(r, z), (4.22a)

A
∂2urz

∂z2
+ ε

B

r

∂2

∂z∂r
(rurr )+ ε2 1

r

∂

∂r
(r
∂urz

∂r
) = h2(r, z), (4.22b)

∂urr

∂z
+ ε

∂urz

∂r
= h3(r) for z = 0, r ∈ [0,∞), (4.22c)
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Figure 4. Numerically calculated horizontal component of the deformation field throughout the layer for ε = 0·1,
ν = 0·0.

(1 − ν)
∂urz

∂z
+ εν(

∂urr

∂r
+ urr

r
) = h4(r) for z = 0, r ∈ (1,∞), (4.22d)

urz = 0 for z = 0, r ∈ [0, 1], (4.22e)

urz = urr = 0 for z = 1, r ∈ [0,∞), (4.22f)

where the inhomogeneous terms h1, h2, h3, h4 are obtained by applying the differential opera-
tors that appear on the left-hand side of the equations to uar , u

a
z . The integrals required for the

evaluation of the right hand side of (4.22) are calculated using a composite Simpson’s rule.

4.3. COMPARISONS

Our goal in this section is twofold: we wish to assess the validity of the analytical solution for
the vertical component of the deformation field by comparing it with the numerical solution
as well as a well known asymptotic solution. Moreover, we wish to exhibit the fact that the
modified numerical scheme converges significantly faster than the original one.

Alblas and Kuipers in [1] obtained, using the Wiener- Hopf technique, an asymptotic so-
lution valid in the immediate vicinity of the edge of the indenter. This result was obtained for
the planar problem but is valid for the axisymmetric problem as well, with the same accuracy.
Their approximation is:
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Figure 5. Numerically calculated vertical component of the deformation field throughout the layer for ε = 0·1 ,
ν = 0·0.

uz(r, 0) ≈ 1 − 2√
π

√
2(1 − ν)2

1 − 2ν

√
r − 1

ε
, (4.23)

which is valid for 0 < r − 1 << 1, ν ∈ [0, 0·5).
In Figure 6 we compare between the analytical approximation (3.17b), the asymptotic

solution (Alblas-Kuipers) and the numerical solution obtained in two different meshes, one
coarser and one finer. We observe that near the edge of the indenter the numerical solution, as
we refine the mesh, converges to the asymptotic and the analytical solutions. This justifies the
conclusion that the analytical approximation provides us with a very accurate approximation
of the solution, at least near the edge of the indenter. It also demonstrates the difficulty the
numerical solution has in resolving the singularity and the necessity of a very fine mesh in
this region.

In Figure 9 we compare the analytical approximation and the numerical solution obtained
using the finest mesh. We see again that the analytical solution is accurate over the surface
except for a small region somewhat pass the edge of the indenter.

A natural question to ask is whether the approximate analytical solution provides us with
an accurate description of the gradient of the displacement fields. This issue is addressed in
Figure 7 where we compare between the derivative of the vertical component of the displace-
ment field along the horizontal direction ∂uz/∂r near the edge of the indenter obtained from
the numerical solution, the approximate analytical solution and the Alblas-Kuipers solution.
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Figure 6. Comparison between numerical, analytical and asymptotic solutions for uz at z = 0 near r = 1,
ε = 0·1, ν = 0·1.

We see that the agreement between the numerically calculated gradient and the one obtained
through differentiation of (3.17b) for z = 0 is remarkable. On the other hand, the displacement
gradient calculated from the Ablas-Kuipers solution provides an accurate description of the
gradient only very near z = 0, r = 1 and, moreover, the accuracy diminshes as we move away
from the edge of the intender, as expected. Moreover, in Figure 8 we compare between the
numerical and analytical approximation as well as the gradients along the horizontal direction
at z = 0·25. Again the conclusion is that (3.17b) provides us with a very accurate description
of both uz as well as ∂uz/∂r throughout the layer.

We now wish to justify the fact that the convergence rate of the modified numerical scheme
is higher than that of the original scheme when solving for the vertical component of the de-
formation field. We solve the problem using various meshes and we take the solution obtained
with the original scheme using the finest mesh to be the exact solution. We use 2M + 1 points
on the radial direction and N = 1

2M in the vertical direction, where M varies from 200 to
1600.

To investigate the relative improvement of the computed solution as the mesh is refined
we need a measure for the ‘error’ of the solutions obtained. As seen in Figures 2 and 3, the
elliptic nature of the problem results in a smooth solution throughout the interior of the layer
(0 < z ≤ 1). Consequently, the most computationally difficult component of the displacement
field to compute accurately occurs on the surface (z = 0). To measure the error we will use
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Figure 7. Comparison between numerical, analytical and asymptotic solutions for ∂uz/∂r at z = 0 near r = 1,
ε = 0·1, ν = 0·1.

Figure 8. Comparison between numerical and analytical solutions for uz and ∂uz/∂r at z = 0·25 for ε = 0·1,
ν = 0·1.
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Figure 9. Comparison between the numerical and the analytical solution for uz at z = 0, for ε = 0·1, ν = 0·1.

the integrated radial displacement under the indenter ( 0 ≤ r ≤ 1 ). In particular, as a measure
of the error between the ‘exact’ solution ur and the numerical solution ũr we use:

||e|| = |
∫ 1

0
|u(r, 0)| r dr −

∫ 1

0
|ũ(r, 0)| r dr|

=
∫ 1

0
|u(r, 0) − ũ(r, 0)| r dr,

(4.24)

The reason for the above equality is the fact that the radial component of the displacement
field is negative on this interval (see Figures 2 and 3). The integrals in (4.24) are calculated
numerically using a composite Simpson’s rule.

In the figures presented so far we have been using the original numerical scheme. We
compare between the convergence rates of the two schemes in Figure 10. We readily see that
the convergence rate for the vertical deformation using the modified scheme is much higher.
In terms of CPU time, the numerical solution using the finest mesh and the original scheme
was obtained in 23·673 sec, whereas the modified scheme provided us with the same accuracy
in 2·041 sec using a much coarser mesh.
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Figure 10. Convergence rates for the original and modified numerical schemes, ε = 0·1, ν = 0·1.

5. Conclusions

In this paper we have studied the indentation of a linear homogeneous isotropic elastic layer
by a rigid cylindrical flat ended indenter. We have presented asymptotic analysis, approx-
imate analytical solutions as well as numerical solutions using two different schemes. We
have exhibited that the modified numerical scheme, in which we incorporate the approximate
analytical solutions, provides us with accurate answers in coarser meshes. In particular, in
terms of CPU time, using the modified scheme we get the same accuracy that we would get
with the original scheme ten times faster. We have also justified the fact that we can use
the approximate analytical solution to calculate the deformation gradient along the horizontal
direction throughout the layer.

The method that we have presented has certain limitations. Its efficiency decreases when
either ε or ν increase. Moreover, it provides us with an accurate analytical expression and an
efficient way for calculating only the vertical component of the deformation field.

Another way to improve the numerical scheme would be to use an adaptive mesh in order
to isolate the singularity. An adaptive mesh technique could be incorporated into either a finite
elements or a finite-differences scheme. If one were to use an adaptive mesh with finite dif-
ferences, some caution should be taken in order to maintain the second-order accuracy of the
discretization (i.e. one would have to interpolate the numerically calculated solution between
the ciarse and the fine mesh). Even in the case of an adaptive mesh, one could still subtract the
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approximate analytical expressions in order to render the singularity milder. Thus, one could
construct a modified numerical scheme, together with an adaptive mesh in order to improve
the convergence rate even further. We have chosen to present this numerical/analytical method
in a uniform mesh for illustrative purposes. We intend discuss the extension of this method
for the case of an adaptive scheme in a later publication.

Another idea that this work suggests is that one could develop a finite-element code in
which information concerning the structure of the solution (i.e. Equations 2.17a, 3.17b) is
incorporated into the basis functions that are being used. In this way, the resulting problem
has a ‘milder’ singularity and can be solved accurately in a coarser mesh. This approach
has been used successfully in other cases of singularly perturbed systems [25] as well as in
numerical homogenization [26].
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